

D-ECO, sistema portátil de limpieza con tecnología de activación electroquímica innovador y que promete otra forma de limpieza, el uso de dos sustancias muy comunes: Agua y sal.

Este fantástico producto utiliza la activación electroquímica (ECA) para producir una tecnología sumamente eficaz, en producto activo y solución de limpieza.

Este sistema permite la máxima eficacia en suciedades de mantenimiento sin necesidad de usar productos químicos y con niveles de desinfección del 99.99%.

También evita además del coste de producto el coste de transporte reparto, embalaje y eliminación de envases usados.

D-ECO, contribuye al objetivo generalizado a nivel mundial de suprimir el uso de productos químicos tanto por el riesgo que aportan por si mismos para la salud humana, como a efectos de contaminación ambiental.

Desde el punto de vista de la seguridad alimentaria sin el uso de productos químicos, eliminamos patógenos capaces de generar brotes como listeria, monocrytogenens, Salmonela, SPP, Escherichia coli, Staphyilococcus aureus y Cronobacter satrazakii.

No provoca los biofims propios de los productos químicos evitando como consecuencia el desarrollo de microorganismos (microespecie) o multiespecie.

Los biofilms permiten a los microorganismos que producen diversas sustancias polímeras extracelular (SPE) que las recubren protegiéndolas de las condiciones meteorológicas adversas. El agua ionizada no permite la producción de biofilms.

Una tecnología económica y el líquido generado muy eficaz. Cumple la normativa EN1276, por lo que hace referencia a niveles de desinfección de superficies 99,997.

D-ECO se presenta como un conjunto, que se compone jarra de 1,2 litros y de una unidad de 12 voltios, que convierte el agua del grifo y la sal en un producto de limpieza y desinfección de alta eficacia.

Siguiendo las instrucciones, la solución de limpieza está disponible en tan solo 3-4 minutos. Inmediatamente en un segundo se activa, pequeñas burbujas comienzan a ascender y el producto brilla en su esplendor azul, una vez terminado emite un pitido corto y listo para usar. No se nota ningún cambio en la solución, salvo un ligero olor.

- Su envase pulverizador facilita la aplicación
- No precisa enjuague y no genera residuos
- No requiere personal especializado para su manipulación.

Antes

D-ECO

Después de la limpieza con **D-ECO**

CARACTERISTICAS

D-ECO se prepara mediante el vertido de 1,2 litros de agua de grifo a la jarra y 3-4 gramos de sal de mesa común.

La mezcla se activa mediante Electroquímica. CINCO minutos después usted tiene un fluido seguro y eficaz sin ninguna medida de seguridad ni precauciones para el manejo de productos agresivos.

La electroquímica no es nueva, hay otros productos en el mercado con una función parecida, pero los resultados de D-ECO, el líquido que se produce es una solución verdaderamente activa que mantiene su eficacia durante un máximo de una semana.

LOS BENEFICIOS RESPONDEN EN EFICACIA Y ECONOMÍA

Las principales ventajas de este innovador y fantástico sistema se encuentran en el coste y la ecología. El agua del grifo y la sal son los únicos productos que debemos aplicar. La generación de la solución se realiza en el acto, eliminando la necesidad de transporte, costes de distribución y almacenamiento necesario para los productos químicos tradicionales. No hay envase o embalaje que desechar.

El uso con microfibra para limpiar conjuntamente con el agua activada electrónicamente, ha tenido una gran aceptación entre las empresas de limpieza, hoteles, restaurantes, residencias, oficinas, fabricas, y gimnasios se encuentran entre los primeros adaptados.

- Con el agua ionizada, no necesitamos guantes de protección.
- Muchas licitaciones públicas puntúan la reducción de productos químicos, la propia administración central, ha dado instrucciones a las administraciones autonómicas y locales para que puntúen en sus contratos públicos la sostenibilidad. El agua ionizada es la solución.
- El agua ionizada no produce alergias, la mayor parte de productos de limpieza sí los produce.
- Con el agua ionizada, la microfibra dura más ya que no le atacan los productos químicos.
- Con el agua sola o agua y producto detergente, transportamos las bacterias de un sitio a otro.
- El agua ionizada (electroquímicamente modificada) es bactericida, fungicida, virucida y su poder de estabilidad supera los 15 días.
- El agua ionizada, cumple la norma EN1276, la EN1040, la EN1275, la EN1650 y la EN 13697, sobre la eliminación de la actividad bacteriana i microbiana.

- El agua electroquímicamente modificada, funciona mejor con sal común que con sal de roca
- El agua electroquímicamente es un eficaz desodorizado

CERO: - ALÉRGENOS

CERO: - IRRITACIONES CUTÁNEAS

CERO: - BIOACUMULACIÓN

No es aplicable ningún pictograma de peligrosidad

Cumple el reglamento REACH

NORMATIVAS:

EN 1650: Los desinfectantes químicos y antisépticos usados en el campo de la industria agroalimentaria y en áreas domésticas y comunidades. Ensayo cuantitativo de suspensión para la evaluación de la actividad fungicida.

EN 1276: Antisépticos y desinfectantes químicos Ensayo cuantitativo de suspensión para la evaluación de la actividad bactericida de los antisépticos y desinfectantes químicos utilizados en el campo de la industria agro-alimentaria en las zonas nacionales e institucionales.

EN 1275: Antisépticos y desinfectantes químicos - Ensayo cuantitativo de suspensión para la evaluación de la actividad principal de los desinfectantes químicos antisépticos y desinfectantes químicos.

EN 13697: Antisépticos y desinfectantes químicos. Prueba cuantitativa de la superficie no porosa para la evaluación de bactericida y/o fungicida de los desinfectantes químicos utilizados en el campo de la industria agroalimentaria, en áreas domésticas y comunidades.

EN 1040: Antisépticos y desinfectantes químicos. Ensayo cuantitativo de suspensión para la evaluación de Monitor de Actividad antisépticos químicos básicos bactericidas y desinfectantes.

Bactericida, virucida y fungicida.

ESPECIFICACIONES TÉCNICAS

Modelo:	D-ECO UE-7000			
Método de generación	Electrolisis			
Voltaje	VAC100 - VAC240			
Consumo Eléctrico	45 W			
Electrodo	Platino sobre titanio			

EL EFECTO DE LA DESINFECCIÓN CON AGUA ELECTROLIZADA PRODUCIDA POR TRIO

Laboratorio de diagnóstico médico, Facultad de Medicina, Soonchunhyang University Tae-yoon Choi

RESUMEN

ANTECEDENTES: El uso de desinfectantes es necesario para el control de la higiene, prevenir las intoxicaciones alimentarias y para el control de las enfermedades infecciosas. Se realizó la evaluación del efecto de desinfección con agua electrolizada producida con D-ECO EU-7010 (KTCC Global, Hoengseong, Corea del Sur), un fabricante local de equipos de electrólisis.

MÉTODOS: Tanto las cepas aisladas de los especimenes recogidos de los hospitales y las cepas de referencia fueron expuestas al agua electrolizada producida a partir de D-ECO de 0,5; 1; 2; 5 y 10 minutos. La mezcla fue inoculada en agar y solución de soja triptica, y se observaron el crecimiento bacteriano y recuento viable.

RESULTADOS: Las bacterias generales como las resistentes a la meticilina Staphylococcus aureus (MRSA), resistentes a la vacomycin Enterococcus faecium (VRE) y e. coli y trofozoitos como el Bacillus subtilis murieron en 1 min. después de la exposición.

CONCLUSIÓN: El agua electrolizada producida a partir de D-ECO tiene un fuerte efecto de desinfección contra bacterias generales y por lo tanto puede ser útil para el control de la higiene, previniendo la intoxicación alimentaria y contra las enfermedades infecciosas.

Autor: Tae-yoon Choi, 657 Hannamdong, Yongsangu, Seúl, departamento de diagnóstico médico 140-743, Soonchunhyang University Hospital

Tel: 02-709-9425, correo electrónico: choity@schmc.ac.kr

ANTECEDENTES

Lavado, desinfección, esterilización y pasteurización son procedimientos que reducen o eliminan el número de bacterias, y una parte importante de los enfoques para el control de la infección. El lavado es un método por el cual se eliminan la materia orgánica, suciedad o microorganismos son eliminados de ciertos objetos usando el agua, la acción mecánica o detergentes.

Desinfectante significa un agente que puede eliminar a los hongos causantes de la infección y trofozoítos en 10 minutos, y no significa eliminar a las esporas bacterianas. Los desinfectantes pueden ser divididos en: 1) los que pueden eliminar las bacterias, virus y algunos hongos, pero no pueden eliminar el bacilo de la tuberculosis o las esporas de las bacterias (desinfectante débil), 2) los que pueden inactivar los bacilos de la tuberculosis y los hongos, pero no pueden eliminar a las esporas de las bacterias (desinfectante de grado medio), y 3) que incluso pueden eliminar a las esporas de las bacterias si el tiempo de exposición es suficiente (desinfectante fuerte).

Higienizante significa un agente que puede reducir el número de microorganismos que existen en la superficie de las sustancias inorgánicas hasta el nivel en el que se considera seguro según salud pública. Esterilización significa la destrucción de todas las formas de los microorganismos (bacterias, hongos, virus y esporas de bacterias) a través de medios químicos o físicos.

Higienizante / desinfectante es un agente que puede inhibir el crecimiento o elimina a los microorganismos.

Higienizantes / desinfectantes para instrumentos basados en la Ley de Higiene de los Alimentos [2] son unas sustancias que pueden ser utilizadas para la esterilización y desinfección de instrumentos, envases o embalajes y pueden ser transferidos indirectamente a los alimentos. Estos higienizantes / desinfectantes pueden eliminar un 99,999% de los trofozoítos (5 log10 CFU / ml) en 5 minutos, y son ampliamente utilizados para fines de higiene de los alimentos como instrumentos para la alimentación, y los equipos / máquinas de embalaje.

Debido a la expansión de los servicios de catering, un aumento de las comidas en el exterior, la occidentalización de la dieta, el calentamiento global y el aumento de la temperatura interior, la incidencia de la intoxicación alimentaria va en aumento y tiende a ser a gran escala implicando a una gran cantidad de personas.

Por lo tanto, en agosto de 2002, la revisión de la Ley de Higiene Alimentaria, de la Administración de Alimentos y Medicamentos (KFDA) designó a los desinfectantes de instrumentos y otras cosas diversas como elementos que se controlan de acuerdo a la Ley de Higiene de los Alimentos para prevenir la intoxicación alimentaria y mejorar la higiene de los alimentos. En diciembre de 2003, la KFDA anunció unos criterios y unas especificaciones temporales para los desinfectantes utilizados para los instrumentos y otros objetos diversos con el fin de desinfectar los instrumentos, envases y embalajes. Y ha establecido unos criterios para la certificación de los productos de desinfección.

Los ingredientes más comunes utilizados de los agentes para la esterilización / desinfección incluyen el amonio, el etanol, el cloro y las familias de peróxidos de (clase IV). De estos, los desinfectantes de la familia del cloro son los más comúnmente utilizados para problemas relacionados con los costos duplicados y facilidad de uso.

El agua electrolizada, se convierte en activa como elemento de control de la infección, un agente desinfectante nuevo se ha introducido, y su uso se está expandiendo. A partir del generador de electrólisis del agua se obtiene, ácido hipocloroso (HOCI), que ejerce un efecto desinfectante fuerte, cloro elemental y oxígeno activo que son conocidos por tener un buen efecto desinfectante.

En este estudio, se realizó la evaluación del efecto de la esterilización / desinfección con agua electrolizada producida con D-ECO EU-7000 (KTCC Global, Hoengseong, Corea del Sur), un fabricante local de equipos de electrólisis.

<u>MATERIALES Y MÉT</u>ODOS

1. Las especies de bacterias y cepas.

Un total de 9 cepas aisladas de la muestra recogida de pacientes hospitalizados en un hospital de la universidad se utilizaron: 4 cocos gram-negativos; (1 cepa) Staphylococcus aureus sensible a meticilina, (1 cepa) Staphylococcus aureus resistente a meticilina, (1 cepa) Enterococcus faecium resistente a vacomycin, (1 cepa) Enterococcus faecalis y 9 bacilos grannegativos, (1 cepa) Escherichia coli, (1 cepa) Salmonella typhi, (1 cepa) Salmonella Enteritidis, (1 cepa) Shigella sonnei, (1 cepa) Pseudomonas aeruginosa, (1 cepa) Acinetobacter baumannii, (1 cepa) Klebsiella pneumoniae, (1 cepa) Enterobacter cloacae, (1 cepa) Stenotrophomonas maltophilia.

Cepas de referencia incluidos Staphylococcus aureus ATCC 29213, E. coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853 y Bacillus subtilis ATCC 6633.

2. Preparación de esterilización / desinfección del agua (agua electrolizada).

La esterilización / desinfección del agua se produjo utilizando D-ECO (KTCC Global, Hoengseong, Corea del Sur), la producción de agua electrolizada se realizó de acuerdo a las instrucciones del fabricante, para este equipo: 1,2 litros de agua del grifo y 3-4 gr. de sal, se colocaron en el reactor de electrólisis y la electrólisis se llevó a cabo durante 5 min. De acuerdo con las instrucciones del fabricante de D-ECO, la concentración de cloro activo del agua electrolizada, si se obtiene siguiendo las antes mencionadas instrucciones, sería de 90 - 220 ppm.

3. Evaluación del efecto de la desinfección.

Cepas para cultivo puras fueron cultivadas en solución de soja tríptica (TSB) durante 18 horas. Las colonias del cultivo fueron colocadas en solución salina fisiológica, se centrifugan a 3.000 rpm durante 15 minutos, a continuación, los sobrenadantes fueron retirados. 10 ml de solución tampón de fosfato (pH 7,2) se añadió al precipitado bacteriano, la suspensión de la mezcla y la turbidez se fijó en 3 según escala de McFarland.

Cada (0,5 ml) de solución bacteriana fue puesta en 4,5 ml de suero fisiológico, la dilución en serie se llevó a cabo de 10 a 107 capas en TSB para lograr un recuento final de bacterias de 107-108 CFU / ml. A cada (0,5 ml) de solución bacteriana se le añadió 4,5 ml de agua electrolizada, y se dejó a temperatura ambiente; a 0,1 ml de cada una se le inoculó 5 ml de solución de TSB con un tiempo de exposición establecidos en 0,5; 1; 2; 5 y 10 min y se cultivaron en agar de soja tríptica (TSA) utilizando 0,01 ml de sustrato de platino. A continuación, se calculó el crecimiento y el recuento de viables.

Los criterios del efecto desinfección del agente de esterilización / desinfectante se definió como una reducción del recuento de viables de 5 log10 capas o menos en 5 min después del tratamiento con el agente de esterilización / desinfectante de acuerdo con los criterios temporales y las especificaciones para la calificación de los alimentos anunciados por KFDA (KFDA notificación N o 2007-29).

RESULTADOS

1. Efecto de desinfección contra bacterias gran-negativas Cocci.

Para todas las cepas (Staphylococcus aureus sensible a la meticilina, Staphylococcus aureus resistente а la meticilina, Enterococcus faecium resistente а la Enterococcusfeacalis, y Staphylococcus aureus ATCC 29213), el recuento de viables se redujo a 5 log₁₀ en 30 segundos después de la exposición (Tabla 1).

2. Efecto de desinfección contra bacilos gran-negativos.

Para todas las cepas (E. coli, Salmonella typhi, Salmonella enteritidis, Shigella sonnei, Pseudomonas aeruginosa, Acinetobacter baummanii, Klebsiella pneumoniae, Enterobacter cloacae, Stenotrophomonas maltophilia, E. coli ATCC 25922 y Pseudomonas aeruginosa ATCC 27853) el recuento de viables se redujo a 5 log₁₀ en 1 min después de la exposición (Tabla 1).

3. Efecto de desinfección contra el Bacillus subtilis.

Recuento de viables de Bacillus subtilis ATCC 6633, un trofozoíto se redujo a 5 log₁₀ en 1 min después de la exposición (Tabla 1).

Tabla 1. Actividad biocida del agua electrolizada producida por D-ECO

UE-7010 contra varios microorganismos en función del tiempo de exposición

Microorganismos ensayados	Cantidad inicial	Colonias remanentes (CFU/mI)				
wilcioorganismos ensayados	(CFU/ml)	0.5 min	1 min	2 min	5 min	10 min
Staphylococcus aureus sensible a la meticilina	1.5x10 ⁸	< 10 ²	< 10 ²	< 10 ²	< 10 ²	< 10 ²
Staphylococcus aureus resistente a la meticilina	1.3x10 ⁸	< 10 ²	< 10 ²	< 10 ²	< 10 ²	< 10 ²
Enterococcus faecium resistente a la vancomicina	1.1x10 ⁸	< 10 ²	< 10 ²	< 10 ²	< 10 ²	< 10 ²
Enterococcus faecalis	1.2x10 ⁸	< 10 ²	< 10 ²	< 10 ²	< 10 ²	< 10 ²
Escherichia coli	1.6x10 ⁸	< 10 ²	< 10 ²	< 10 ²	< 10 ²	< 10 ²
Klebsiella pneumoniae	1.3x10 ⁸	< 10 ²	< 10 ²	< 10 ²	< 10 ²	< 10 ²
Enterobacter cloacae	1.2x10 ⁸	< 10 ²	< 10 ²	< 10 ²	< 10 ²	< 10 ²
Salmonella Typhi	1.4x10 ⁸	< 10 ²	< 10 ²	< 10 ²	< 10 ²	< 10 ²
Salmonella Enteritidis	1.8x10 ⁸	< 10 ²	< 10 ²	< 10 ²	< 10 ²	< 10 ²
Shigella sonnei	1.0x10 ⁸	< 10 ²	< 10 ²	< 10 ²	< 10 ²	< 10 ²
Pseudomonas aeruginosa	1.2x10 ⁸	> 10 ³	< 10 ²	< 10 ²	< 10 ²	< 10 ²
Acinetobacter baumannii	1.4x10 ⁸	< 10 ²	< 10 ²	< 10 ²	< 10 ²	< 10 ²
Stenotrophomonas maltophilia	1.5x10 ⁸	> 10 ³	< 10 ²	< 10 ²	< 10 ²	< 10 ²
Staphylococcus aureus, ATCC 29213	1.2x10 ⁸	< 10 ²	< 10 ²	< 10 ²	< 10 ²	< 10 ²
E. coli, ATCC 25922	1.3x10 ⁸	< 10 ²	< 10 ²	< 10 ²	< 10 ²	< 10 ²
Pseudomonas aeruginosa, ATCC 27853	1.5x10 ⁸	> 10 ²	< 10 ²	< 10 ²	< 10 ²	< 10 ²
Bacillus subtilis, ATCC 6633 (forma vegetativa)	5.3x10 ⁷	> 10 ³	< 10 ²	< 10 ²	< 10 ²	< 10 ²

CONCLUSIÓN

El agua electrolizada producida a partir de D-ECO (KTCC Global, Hoengseong), como electrolizador, tiene un efecto desinfectante fuerte contra las bacterias en general, tales como Staphylococcus aureus resistente a la meticilina (MRSA), Enterococcus faecium resistente a la vancomicina (VRE), E. coli, Salmonella, Shigella, y por lo tanto es útil como agente de esterilización / desinfección para el control de la higiene, para prevenir la aparición de intoxicaciones alimentarias y para el control de las enfermedades infecciosas.